A Pre-Processing Pipeline to Quantify, Visualize and Reduce Technical Variation in Protein Microarray

2021 
Technical variation, or variation from non-biological sources, is present in most laboratory assays. Correcting for this variation enables analysts to extract a biological signal that informs questions of interest. However, each assay has different sources and levels of technical variation and the choice of correction methods can impact downstream analyses. Compared to similar assays such as DNA microarrays, relatively few methods have been developed and evaluated for protein microarrays, a versatile tool for measuring levels of various proteins in serum samples. Here, we propose a pre-processing pipeline to correct for some common sources of technical variation in protein microarrays. The pipeline builds upon an existing normalization method by using controls to reduce technical variation. We evaluate our method using data from two protein microarray studies, and by simulation. We demonstrate that pre-processing choices impact the fluorescent-intensity based ranks of proteins, which in turn, impact downstream analysis. 1 Impact StatementProtein microarrays are in wide use in cancer research, infectious disease diagnostics and biomarker identification. To inform research and practice in these and other fields, technical variation must be corrected using normalization and pre-processing. Current protein microarray studies use a variety of normalization methods, many of which were developed for DNA microarrays, and therefore are based on assumptions and data that are not ideal for protein microarrays. To address this issue, we develop, evaluate, and implement a pre-processing pipeline that corrects for technical variation in protein microarrays. We show that pre-processing and normalization directly impact the validity of downstream analysis, and protein-specific approaches are essential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []