Path-contractions, edge deletions and connectivity preservation

2017 
We study several problems related to graph modification problems under connectivity constraints from the perspective of parameterized complexity: {\sc (Weighted) Biconnectivity Deletion}, where we are tasked with deleting~$k$ edges while preserving biconnectivity in an undirected graph, {\sc Vertex-deletion Preserving Strong Connectivity}, where we want to maintain strong connectivity of a digraph while deleting exactly~$k$ vertices, and {\sc Path-contraction Preserving Strong Connectivity}, in which the operation of path contraction on arcs is used instead. The parameterized tractability of this last problem was posed by Bang-Jensen and Yeo [DAM 2008] as an open question and we answer it here in the negative: both variants of preserving strong connectivity are $\sf W[1]$-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter tractable and we provide a $2^{O(k\log k)} n^{O(1)}$-algorithm that solves {\sc Weighted Biconnectivity Deletion}. Further, we show that the unweighted case even admits a randomized polynomial kernel. All our results provide further interesting data points for the systematic study of connectivity-preservation constraints in the parameterized setting.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []