Cluster and field elliptical galaxies at z ~ 1.3 - The marginal role of the environment and the relevance of the galaxy central regions

2017 
Aims. The aim of this work is twofold: first, to assess whether the population of elliptical galaxies in cluster at z ~ 1.3 differs from the population in the field and whether their intrinsic structure depends on the environment where they belong; second, to constrain their properties 9 Gyr back in time through the study of their scaling relations. Methods. We compared a sample of 56 cluster elliptical galaxies selected from three clusters at 1.2 z R e within the effective radius and central mass density Σ 1 kpc , within 1 kpc radius. Results. We find that the structure and the properties of cluster elliptical galaxies do not differ from those in the field: they are characterized by the same structural parameters at fixed mass and they follow the same scaling relations. On the other hand, the population of field elliptical galaxies at z ~ 1.3 shows a significant lack of massive (ℳ ∗ > 2 × 10 11 M ⊙ ) and large ( R e > 4−5 kpc) elliptical galaxies with respect to the cluster. Nonetheless, at ℳ ∗ 11 M ⊙ , the two populations are similar. The size-mass relation of cluster and field ellipticals at z ~ 1.3 clearly defines two different regimes, above and below a transition mass m t ≃ 2−3 × 10 10 M ⊙ : at lower masses the relation is nearly flat ( R e ∝ Μ * -0.1±0.2 ), the mean radius is nearly constant at ~1 kpc and, consequenly, Σ R e ≃ Σ 1 kpc while, at larger masses, the relation is R e ∝ Μ * 0.64±0.09 . The transition mass marks the mass at which galaxies reach the maximum stellar mass density. Also the Σ 1 kpc -mass relation follows two different regimes, above and below the transition mass ( Σ 1 kpc ∝ Μ * 1.07 0.64>mt ) defining a transition mass density Σ 1 kpc ≃ 2−3 × 10 3 M ⊙ pc -2 . The effective stellar mass density Σ R e does not correlate with mass; dense/compact galaxies can be assembled over a wide mass regime, independently of the environment. The central stellar mass density, Σ 1 kpc , besides being correlated with the mass, is correlated to the age of the stellar population: the higher the central stellar mass density, the higher the mass, the older the age of the stellar population. Conclusions. While we found some evidence of environmental effects on the elliptical galaxies as a population, we did not find differences between the intrinsic properties of cluster and field elliptical galaxies at comparable redshift. The structure and the shaping of elliptical galaxies at z ~ 1.3 do not depend on the environment. However, a dense environment seems to be more efficient in assembling high-mass large ellipticals, much rarer in the field at this redshift. The correlation found between the central stellar mass density and the age of the galaxies beside the mass shows the close connection of the central regions to the main phases of mass growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    221
    References
    15
    Citations
    NaN
    KQI
    []