Effect of Aggregation of On-Site Storm-Water Control Devices in an Urban Catchment Model

2009 
Spatially distributed on-site devices such as detention tanks and bioretention are becoming more common as a means of controlling urban storm-water quantity and quality. One approach to modeling the cumulative catchment-scale effects of such devices is to resolve the catchment down to the scale of a land parcel or finer, and then to model each device separately. This involves computational and input data demands that may be impracticable, especially in planning or preliminary design stages of storm-water system design. To reduce these demands, the spatial resolution can be coarsened by aggregating land parcels and devices, but this may compromise model accuracy. The focus of this study was examination of the effects of aggregation on predictions of water quantity and quality (for a representative contaminant, total suspended solids) for detention, infiltration, and bioretention devices. A detailed model for urban storm water improvement conceptualization simulation was set up for a 0.83  km2 catchment wit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    54
    Citations
    NaN
    KQI
    []