Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci.

2021 
Rationale: Genome-wide association studies (GWAS) have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cis-regulatory elements (CREs) but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of CREs, to understand transcription factors establishing cell identity and to interpret CAD-relevant, non-coding genetic variation. Methods and Results: We used single nucleus ATAC-seq to generate DNA accessibility maps in > 7,000 cells derived from human atherosclerotic lesions. We identified five major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, NK/T-cells and B-cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single cell co-accessibility and cis-eQTL information, we prioritized putative target genes and candidate regulatory elements for ~30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD GWAS variants using epigenetic QTL analysis in primary human aortic endothelial cells and STARR-Seq massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal SNP(s) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying snATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by non-coding GWAS variants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    8
    Citations
    NaN
    KQI
    []