ACE inhibition attenuates radiation-induced cardiopulmonary damage

2015 
Abstract Background and purpose In thoracic irradiation, the maximum radiation dose is restricted by the risk of radiation-induced cardiopulmonary damage and dysfunction limiting tumor control. We showed that radiation-induced sub-clinical cardiac damage and lung damage in rats mutually interact and that combined irradiation intensifies cardiopulmonary toxicity. Unfortunately, current clinical practice does not include preventative measures to attenuate radiation-induced lung or cardiac toxicity. Here, we investigate the effects of the ACE inhibitor captopril on radiation-induced cardiopulmonary damage. Material and methods After local irradiation of rat heart and/or lungs captopril was administered orally. Cardiopulmonary performance was assessed using biweekly breathing rate measurements. At 8weeks post-irradiation, cardiac hemodynamics were measured, CT scans and histopathology were analyzed. Results Captopril significantly improved breathing rate and cardiopulmonary density/structure, but only when the heart was included in the radiation field. Consistently, captopril reduced radiation-induced pleural and pericardial effusion and cardiac fibrosis, resulting in an improved left ventricular end-diastolic pressure only in the heart-irradiated groups. Conclusion Captopril improves cardiopulmonary morphology and function by reducing acute cardiac damage, a risk factor in the development of radiation-induced cardiopulmonary toxicity. ACE inhibition should be evaluated as a strategy to reduce cardiopulmonary complications induced by radiotherapy to the thoracic area.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    70
    Citations
    NaN
    KQI
    []