Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9.

2016 
Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer’s disease (AD). It has been reported that osthole exerts its neuroprotective effect on neuronal synapses, but its exact mechanism is obscure. Recently, microRNAs have been demonstrated to play a crucial role in inducing synaptotoxicity by Aβ, implying that targeting microRNAs could be a therapeutic approach of AD. In the present study, we investigated the neuroprotective effects of osthole on a cell model of AD by transducing APP695 Swedish mutant (APP695swe, APP) into mouse cortical neurons and human SH-SY5Y cells. In this study, the cell counting kit CCK-8, apoptosis assay, immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction, and Western blot assay were used. We found that osthole could enhance cell viability, prevent cell death, and reverse the reduction of synaptic proteins (synapsin-1, synaptophysin, and postsynaptic density-95) in APP-overexpressed cells, which was attributed to increases in microRNA-9 (miR-9) expression and subsequent decreases in CAMKK2 and p-AMPKα expressions. These results demonstrated that osthole plays a neuroprotective activity role in part through upregulating miR-9 in AD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    29
    Citations
    NaN
    KQI
    []