Culture-independent genotyping revealed three strain clusters in a potential Neisseria gonorrhoeae outbreak in young heterosexuals (<25), the Netherlands, October 2017 to March 2019

2021 
BACKGROUND Investigation was undertaken to determine the genetic relatedness of Neisseria gonorrhoeae (NG) isolates of young (<25 years) heterosexuals of a potential outbreak from October 2017 to March 2019 in South-Limburg, the Netherlands. METHODS Data and residual sample material of routine diagnostics were retrieved for outbreak cases (78/81), young heterosexuals at baseline (January 2016 to September 2017, n = 30), and men who have sex with men (2018, n = 47). Total DNA was isolated, and NG was genotyped using culture-free NG multiantigen sequence typing. Sanger sequence data were used to construct a phylogenetic tree. Cases of outbreak clusters were geographically mapped, and descriptive analyses were performed on patient characteristics, comparing these clusters. RESULTS Outbreak investigation showed 81 cases of young heterosexuals between October 2017 and March 2019 (4.5 per month) compared with 30 between January 2016 and September 2017 (1.4 per month), which was considered as baseline. Culture-independent genotyping of NG was performed to assess the genetic relatedness, as only 21 outbreak cases were culture confirmed. This revealed 3 independent outbreak clusters G2 (n = 18), G13113 (n = 11), and GNewST (n = 24). None of the clusters were geographically linked or introduced by bridging with men who have sex with men networks. Number of sex partners reported by men and Chlamydia trachomatis coinfection were associated with clusters G2 and GNewST, respectively. CONCLUSIONS Culture-independent typing proved to be essential to identify the 3 outbreak clusters. However, targeted interventions were difficult because information on sex partners was limited. Therefore, prospective culture-independent typing could be used for early outbreak detection and aid in transmission prevention.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []