NeuralDAO: Incorporating neural network generated dose into direct aperture optimization for end-to-end IMRT planning.

2021 
PURPOSE Thecurrent practice in intensity-modulated radiation therapy (IMRT) planning almost always includes different dose calculation strategies for plan optimization and final dose verification. The accurate Monte Carlo (MC) dose algorithm is considered to be time-consuming for the optimization. Thus a fast, simplified dose algorithm is used in the optimization. The significant differences between the optimized dose and the delivered dose lead to tediously planning loops and potentially suboptimal solutions. This work aims to develop an IMRT optimization algorithm to minimize the dose discrepancy so that the delivered dose can be optimized in a holistic, end-to-end manner. METHODS The proposed algorithm, namely NeuralDAO, integrates a neural dose network into the column generation (CG) direct aperture optimization (DAO) formulation for step-and-shoot IMRT planning. The neural dose network is designed and trained to produce doses of MC-level accuracy within few milliseconds. Its differentiability is fully exploited to compute gradients for identifying potential aperture shapes. A prototype of NeuralDAO was developed in PyTorch and available to the public. Five lung patient cases have been studied. Dosimetric accuracy was compared with the MC dose. Plan quality and time were compared with a state-of-the-art (SoA) dose-correct algorithm. Statistical analysis was performed by Wilcoxon signed-rank test. RESULTS The average gamma passing rate at 2 mm/2% is 99.7% between the optimized and delivered doses. The convergence process produced by NeuralDAO is virtually identical to that produced by an MC-based DAO. The average dose calculation time is 12.1 ms for an aperture on GPU. One session of optimization took 10-36 min. Compared with the SoA, better conformity index and homogeneity index were observed for the target. The esophagus was significantly spared. Significant reductions were observed for the replanning number and the planning time. CONCLUSIONS A new DAO algorithm based on the neural dose network has been developed. The results suggest that this algorithm minimizes the discrepancy between the optimized and delivered doses, which offers a promising approach to reduce the time and effort required in IMRT planning. This work demonstrates the possibility of applying the neural network in IMRT optimization. It is of great potential to extend this algorithm to other treatment modalities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []