The clonal and molecular aetiology of emergency dendritic cell development

2020 
Extrinsic regulation of single haematopoietic stem and progenitor cell (HSPC) fate is crucial for immune cell development. Here, we examine the aetiology of Flt3 ligand (Flt3L)-mediated emergency development of type 1 conventional dendritic cells (cDC1s), which results in enhanced immunity against infections and cancer. Using cellular barcoding, we demonstrate a predominant role of enhanced clonal expansion and moderate contribution via recruitment of additional cDC1-generating HSPCs. The selective cDC1 expansion occurs primarily via multi-/oligo-potent clones, without compromising output to other lineages. To understand the molecular hallmarks early during a Flt3L response, we develop Divi-Seq to simultaneously profile cell division history, surface phenotype and transcriptional state of single HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative early progenitor-like state, which leads to selective emergence of CD11c+cKit+ transitional precursors with high cellular output to cDC1s. These findings inform the mechanistic action of Flt3L in natural immunity and immunotherapy at a clonal level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []