Sensing intruders using entanglement: a photonic quantum fence

2009 
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder's ability to spoof a sensor receiver using a 'classical' intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against 'quantum' intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    6
    Citations
    NaN
    KQI
    []