Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage

2019 
The development of form-stable phase-change materials (FSPCMs) with large latent heat, excellent thermal stability, and recyclability is essential for their practical applications in thermal or solar energy saving. In this paper, we first report the FSPCM composites with exceptional latent heat by employment of sugar alcohol, in this case erythritol (Ery) and mannitol (Man), as organic phase-change materials (PCMs) and carbonized kapok fiber (KKf) with a high Brunauer–Emmett–Teller surface area of up to 3396 m2 g–1 as porous supporting materials. The unique hollow tubelike structure of KKf makes it possible to load the organic PCMs inside and outside the KKf tubes, and a high load value of 93% was achieved. The carbonized KKf could not only endow itself robust thermal stability but also significantly decrease supercooling while enhancing the thermal conductivity of the PCM composites by over 130% compared with pure Ery and Man. Compared with these reported PCM composites for low and medium temperature usu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    12
    Citations
    NaN
    KQI
    []