language-icon Old Web
English
Sign In

On Radicals with Amitsur Property

2004 
Abstract A radical γ has the Amitsur property, if γ(A[x]) = (γ(A[x]) ∩ A)[x] for every ring A. To any radical γ with Amitsur property we construct the smallest radical γ x which coincides with γ on polynomial rings. Distinct special radicals with Amitsur property are given which coincide on simple rings and on polynomial rings, answering thus a stronger version of M. Ferrero's problem. Radicals γ with Amitsur property are characterized which satisfy A[x, y] ∈ γ whenever A[x] ∈ γ.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    6
    Citations
    NaN
    KQI
    []