On Radicals with Amitsur Property
2004
Abstract A radical γ has the Amitsur property, if γ(A[x]) = (γ(A[x]) ∩ A)[x] for every ring A. To any radical γ with Amitsur property we construct the smallest radical γ x which coincides with γ on polynomial rings. Distinct special radicals with Amitsur property are given which coincide on simple rings and on polynomial rings, answering thus a stronger version of M. Ferrero's problem. Radicals γ with Amitsur property are characterized which satisfy A[x, y] ∈ γ whenever A[x] ∈ γ.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
6
Citations
NaN
KQI