Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection.

2020 
Pathogen detection is crucial for human, animal, and environmental health; crop protection; and biosafety. Current culture-based methods have long turnaround times and lack sensitivity. Nucleic acid amplification tests offer high specificity and sensitivity. However, their cost and complexity remain a significant hurdle to their applications in resource-limited settings. Thus, point-of-need molecular diagnostic platforms that can be used by minimally trained personnel are needed. The nuclease protection assay (NPA) is a nucleic acid hybridization–based technique that does not rely on amplification, can be paired with other methods to improve specificity, and has the potential to be developed into a point-of-need device. In traditional NPAs, hybridization of an anti-sense probe to the target sequence is followed by single-strand nuclease digestion. The double-stranded target-probe hybrids are protected from nuclease digestion, precipitated, and visualized using autoradiography or other methods. We have developed a paper-based nuclease protection assay (PB-NPA) that can be implemented in field settings as the detection approach requires limited equipment and technical expertise. The PB-NPA uses a lateral flow format to capture the labeled target-probe hybrids onto a nitrocellulose membrane modified with an anti-label antibody. A colorimetric enzyme-substrate pair is used for signal visualization, producing a test line. The nuclease digestion of non-target and mismatched DNA provides high specificity while signal amplification with the reporter enzyme-substrate provides high sensitivity. We have also developed an on-chip sample pretreatment step utilizing chitosan-modified paper to eliminate possible interferents from the reaction and preconcentrate nucleic acids, thereby significantly reducing the need for auxiliary equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []