Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 in patients with unknown spinocerebellar ataxia: a Thai multicentre study

2015 
Background: About 50 % of Thai patients with adult-onset spinocerebellar ataxia (SCA) was Machado-Joseph disease (MJD), SCA1, SCA2 and SCA6. The author investigated further on less common SCAs in the patients without any known mutations. Methods: DNA samples of 82 index patients who were genetically excluded MJD, SCA1, SCA2, SCA6, SCA7 and dentatorubro-pallidoluysian atrophy (DRPLA) were examined. Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 genes were comprehensively performed. Normal range of trinucleotide repeat expansion sizes of TATA-box-binding protein gene (TBP) were also determined in 374 control subjects. Results: Eight patients carried ≥42 CAG/CAA repeat allele in the TBP consistent with SCA17. The pathological repeat alleles ranged from 42 to 57 repeats. All patients had significant degree of cognitive dysfunction. Other non-ataxic phenotypes comprised of parkinsonism, chorea, dystonia and myoclonus. A sporadic patient carried a heterozygous 41-repeat allele developed chronic progressive cerebellar degeneration commenced at the age of 28 years. Whilst, 2 % of the control subjects (8/374) carried the 41-repeat allele. Five of the carriers were re-examined, and revealed that four of them had parkinsonism and/or cognitive impairment without cerebellar signs. Analysis of other types of SCAs was all negative. Conclusions: This is the first study of SCA8, SCA10, SCA12, SCA17 and SCA19 in Thais. SCA17 appears to be an important cause of ataxia in Thailand. Although, the pathological cut-off point of the TBP repeat allele remains unclear, the finding suggests that the 41-repeat may be a pathological allele resulting late-onset or mild phenotype. Apart from ataxia, cognitive impairment and parkinsonism may be clinical presentations in these carriers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    13
    Citations
    NaN
    KQI
    []