A Physical RC Network Model for Electrothermal Analysis of a Multichip SiC Power Module
2018
This paper is concerned with the thermal models which can physically reflect the heat-flow paths in a lightweight three-phase half-bridge two-level SiC power module with six MOSFETs and can be used for coupled electrothermal simulation. The finite-element (FE) model was first evaluated and calibrated to provide the raw data for establishing the physical resistor–capacitor (RC) network model. It was experimentally verified that the cooling condition of the module mounted on a water cooler can be satisfactorily described by assuming the water cooler as a heat exchange boundary in the FE model. The compact RC network consisting of 115 R and C parameters to predict the transient junction temperatures of the six MOSFETS was constructed, where cross-heating effects between the MOSFETs are represented with lateral thermal resistors. A three-step curve fitting method was especially developed to overcome the challenge for extracting the R and C values of the RC network from the selected FE simulation results. The established compact RC network model can physically be correlated with the structure and heat-flow paths in the power module, and was evaluated using the FE simulation results from the power module under realistic switching conditions. It was also integrated into the LTspice model to perform the coupled electrothermal simulation to predict the power losses and junction temperatures of the six MOSFETs under switching frequencies from 5 to 100 kHz which demonstrate the good electrothermal performance of the designed power module.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
35
Citations
NaN
KQI