AGE-Induced Suppression of EZH2 Mediates Injury of Podocytes by Reducing H3K27me3.

2020 
BACKGROUND Chronic hyperglycemia, a pivotal feature of diabetes mellitus (DM), initiates the formation of advanced glycation end products (AGEs) and the dysregulation of epigenetic mechanisms, which may cause injury to renal podocytes, a central feature of diabetic kidney disease (DKD). Previous data of our group showed that AGEs significantly reduce the expression of NIPP1 (nuclear inhibitor of protein phosphatase 1) in podocytes in vitro as well as in human and murine DKD. NIPP1 was shown by others to interact with enhancer of zeste homolog 2 (EZH2), which catalyzes the repressive methylation of H3K27me3 on histone 3. Therefore, we hypothesized that AGEs can directly induce epigenetic changes in podocytes. METHODS We analyzed the relevance of AGEs on EZH2 expression and activity in a murine podocyte cell line. Cells were treated with 5 mg/mL glycated BSA for 24 h. To determine the meaning of EZH2 suppression, EZH2 activity was inhibited by incubating the cells with the pharmacological methyltransferase inhibitor 3-deazaneplanocin A; EZH2 expression was repressed with siRNA. mRNA expression was analyzed with real-time PCR, and protein expression with Western blot. EZH2 expression and level of H3K27 trimethylation in podocytes of diabetic db/db mice, a mouse model for type 2 DM, were analyzed using immunofluorescence. RESULTS Our data demonstrated that AGEs decrease EZH2 expression in podocytes and consequently reduce H3K27me3. This suppression of EZH2 mimicked the AGE effects and caused an upregulated expression of pathological factors that contribute to podocyte injury in DKD. In addition, analyses of db/db mice showed significantly reduced H3K27me3 and EZH2 expression in podocytes. Moreover, the suppression of NIPP1 and EZH2 showed similar effects regarding podocyte injury. CONCLUSIONS Our studies provide a novel pathway how AGEs contribute to podocyte injury and the formation of the so-called metabolic memory in DKD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    5
    Citations
    NaN
    KQI
    []