Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF

2016 
In order to develop a process for the simultaneous production of furfural and easily hydrolyzable cellulose, the degradation of sugar cane bagasse in a single aqueous system and in a 2-methyltetrahydrofuran (MTHF)/aqueous AlCl3 biphasic system was studied. In single aqueous system, the influence of acid species (FeCl3, HCl, and AlCl3) on furfural production and cellulose degradation was investigated at 150 °C. FeCl3 and HCl promoted furfural production from hemicellulose but with severe cellulose degradation. AlCl3 decreased cellulose degradation with considerable furfural yield and high glucan content in solid residues. The role of NaCl in furfural production and cellulose decomposition was also investigated in the single aqueous system using different acids as catalysts. Addition of NaCl significantly promoted furfural yield but also accelerated cellulose decomposition when FeCl3 or HCl was used as catalyst. In the AlCl3-catalyzed system, NaCl had less influence on residue yield and its composition, alt...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    17
    Citations
    NaN
    KQI
    []