Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range

2019 
PREMISE: Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS: We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS: Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS: Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    5
    Citations
    NaN
    KQI
    []