Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

2017 
Abstract Nanocrystalline particles of compositions (CoZn) x Mn 1−x Fe 2 O 4 were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm −1 also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    7
    Citations
    NaN
    KQI
    []