language-icon Old Web
English
Sign In

The Muon Accelerator Program

2011 
Multi-TeV Muon Colliders and high intensity Neutrino Factories have captured the imagination of the particle physics community. These new types of facility both require an advanced muon source capable of producing O(10{sup 21}) muons per year. The muons must be captured within bunches, and their phase space manipulated so that they fit within the acceptance of an accelerator. In a Neutrino Factory (NF), muons from this 'front end' are accelerated to a few GeV or a few tens of GeV, and then injected into a storage ring with long straight sections. Muon decays in the straight sections produce an intense neutrino beam. In a Muon Collider (MC) the muons must be cooled by a factor O(10{sup 6}) to produce beams that are sufficiently bright to give high luminosity in the collider. Bunches of positive and negative muons are then accelerated to high energy, and injected in opposite directions into a collider ring in which they collide at one or more interaction points. Over the last decade our understanding of the concepts and technologies needed for Muon Colliders and Neutrino Factories has advanced, and it is now believed that, within a few years, with a well focused R&D effort (i) amore » Neutrino Factory could be proposed, and (ii) enough could be known about the technologies needed for a Muon Collider to assess the feasibility and cost of this new type of facility, and to make a detailed plan for the remaining R&D. Although these next NF and MC steps are achievable, they are also ambitious, and will require an efficient and dedicated organization to accomplish the desired goals with limited resources. The Muon Accelerator Program (MAP) has recently been created to propose and execute this R&D program.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    6
    Citations
    NaN
    KQI
    []