Enhancing energy storage capacity of B 3+ -intercalated Ti 3 C 2 T x by combining its three-dimensional network structure with hollow carbon nanospheres

2020 
Ti3C2Tx shows potential as an electrode material of supercapacitors due to its unique layered structures for ion diffusion as well as excellent chemical/physical properties. However, the layer stacking and the insufficient conductivity due to the terminated surface groups have limited this application essentially. In the present study, a three-dimensional B3+ ion-intercalated Ti3C2Tx network (B-Ti3C2Tx) was combined with hollow carbon nanospheres (HCNS), which improved the electric transport performance of Ti3C2Tx by reducing the surface functional groups and hindering the restacking of Ti3C2Tx nanosheets effectively. Thus, a new set of 3D hierarchical B-Ti3C2Tx/HCNS composite materials was obtained here with a superior electrochemical performance higher than that of single Ti3C2Tx in the present study, and many other reported Ti3C2Tx-containing materials in literature. In addition, an excellent electrochemical cycling stability with above 91% retention over 3000 cycles was also obtained for this new hybrid material. This work provides a new direction to promote the Ti3C2Tx-based materials for high-performance supercapacitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    4
    Citations
    NaN
    KQI
    []