Implementation of intermittent theta burst stimulation compared to conventional repetitive transcranial magnetic stimulation in patients with treatment resistant depression: A cost analysis

2019 
Background Repetitive transcranial magnetic stimulation (rTMS) is an evidence-based treatment for depression that is increasingly implemented in healthcare systems across the world. A new form of rTMS called intermittent theta burst stimulation (iTBS) can be delivered in 3 min and has demonstrated comparable effectiveness to the conventional 37.5 min 10Hz rTMS protocol in patients with depression. Objectives To compare the direct treatment costs per course and per remission for iTBS compared to 10Hz rTMS treatment in depression. Methods We conducted a cost analysis from a healthcare system perspective using patient-level data from a large randomized non-inferiority trial (THREE-D). Depressed adults 18 to 65 received either 10Hz rTMS or iTBS treatment. Treatment costs were calculated using direct healthcare costs associated with equipment, coils, physician assessments and technician time over the course of treatment. Cost per remission was estimated using the proportion of patients achieving remission following treatment. Deterministic sensitivity analyses and non-parametric bootstrapping was used to estimate uncertainty. Results From a healthcare system perspective, the average cost per patient was USD$1,108 (SD 166) for a course of iTBS and $1,844 (SD 304) for 10Hz rTMS, with an incremental net savings of $735 (95% CI 688 to 783). The average cost per remission was $3,695 (SD 552) for iTBS and $6,146 (SD 1,015) for 10Hz rTMS, with an average incremental net savings of $2,451 (95% CI 2,293 to 2,610). Conclusions The shorter session durations and treatment capacity increase associated with 3 min iTBS translate into significant cost-savings per patient and per remission when compared to 10Hz rTMS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    13
    Citations
    NaN
    KQI
    []