Implementing Strong Interference in Ultrathin Film Top Absorbers for Tandem Solar Cells

2018 
Strong interference in ultrathin film semiconductor absorbers on metallic back reflectors has been shown to enhance the light harvesting efficiency of solar cell materials. However, metallic back reflectors are not suitable for tandem cell configurations because photons cannot be transmitted through the device. Here, we introduce a method to implement strong interference in ultrathin film top absorbers in a tandem cell configuration through use of distributed Bragg reflectors (DBRs). We showcase this by designing and fabricating a photoelectrochemical–photovoltaic (PEC–PV) stacked tandem cell in a V-shaped configuration where short wavelength photons are reflected back to the photoanode material (hematite, α-Fe2O3), whereas long wavelength photons are transmitted to the bottom silicon PV cell. We employ optical simulations to determine the optimal thicknesses of the DBR layers and the V-shape angle to maximize light absorption in the ultrathin (∼10 nm thick) hematite film. The DBR spectral response can be...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    11
    Citations
    NaN
    KQI
    []