Investigation of FRP-reinforced recycled concrete compressive members: Experimental and theoretical analysis

2021 
This study aims to investigate the structural performance of glass fiber reinforced polymer (GFRP) reinforced recycled aggregate concrete (RAC) columns (GFRAC columns) under different loading conditions. The structural performance of GFRAC columns is compared with steel rebars reinforced recycled aggregate concrete columns (STRAC columns). Eighteen samples with geometric measurements of 250 mm and 1150 mm for diameter and height, correspondingly, were fabricated including nine samples with GFRP rebars and hoops and nine samples with steel rebars and hoops. The results depicted that the average axial load-carrying capacity of GFRAC columns was 7.8% lesser than that of STRAC columns. The GFRAC columns presented larger deformation capacity indices. Both GFRAC and STRAC columns depicted similar damage behavior and portrayed substantial lessening in the axial load-carrying capacity because of the eccentric loadings. An analytical model for calculating the axial load-carrying capacity of GFRAC columns was proposed based on a large experimental database of GFRP reinforced samples. A close correlation was detected between the testing outcomes and the theoretical estimates for GFRAC columns, which solidly substantiates the accuracy of the proposed model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []