Effects of Forest Types and Environmental Factors on Soil Microbial Biomass in a Coastal Sand Dune of Subtropical China

2020 
Coastal sand dune ecosystems generally have infertile soil with low water-holding capacity and high salinity. However, many plant species have adapted to the harsh sand environment along the southeastern coast of China. Studying the microbial biomass in such an ecosystem can improve our understanding of the roles that microbes play in soil fertility and nutrient cycling. We investigated the differences in soil microbial biomass carbon (MBC) and nitrogen (MBN) contents and their seasonal dynamics in five forest types (a secondary forest and plantations of Casuarinas, Pine, Acacia, and Eucalyptus). The results indicated that the seasonal variations of soil MBC and MBN contents in all five forest stands were higher in spring and winter, but lower in summer and autumn. The MBC content was lower in the Casuarinas plantation than in the other plantations in the same soil layer. However, no significant differences were observed in MBN contents among the different forest types. The MBC and MBN concentrations were positively correlated with soil moisture, but negatively correlated with soil temperature. The MBC and MBN contents also decreased with increasing soil depth. Across all soil layers, secondary forest had the highest MBC and MBN concentrations. Our study also showed that the MBC and MBN contents were positively affected by total soil carbon (TC), pH, and litter N content, but were negatively impacted by soil bulk density and litter C content. Moreover, the MBN content was positively correlated with root N content. In summary, environmental factors and the differences in litter and fine roots, soil nutrient contents, as well as the soil physical and chemical properties caused by different tree species collectively affected the concentrations of the soil MBC and MBN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []