Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in a magnetic field.
2020
Various promising qubit concepts have been put forward recently based on engineered superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor strongly depends on their spatial extension and is an essential next step for future quantum technologies. Here we investigate the spatial extension of a Shiba state in a semiconductor quantum dot coupled to a superconductor. With detailed transport measurements and numerical renormalization group calculations we find a remarkable more than 50 nm extension of the zero energy Shiba state, much larger than the one observed in very recent scanning tunneling microscopy measurements. Moreover, we demonstrate that its spatial extension increases substantially in a magnetic field. Local magnetic moments coupled to superconductors can form subgap Yu-Shiba-Rusinov states. Here the authors show that Shiba states made with an InAs nanowire quantum dot have large spatial extent, which is beneficial for making Shiba chains that are predicted to host Majorana zero modes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
93
References
10
Citations
NaN
KQI