An advanced approach to control the electro-optical properties of LT-GaAs-based terahertz photoconductive antenna

2019 
Abstract This work reports on an advanced approach to the design of THz photoconductive. antenna (PCA). The LT-GaAs thin films used for the PCA fabrication were synthesized by MBE method on GaAs (100) substrate by adjusting the As pressure, As/Ga fluxes ratio, growth/annealing temperatures and annealing time. These parameters crucially affect electro-optical properties of the PCA samples as evidenced by the THz radiation power and time-domain spectroscopy measurements. The annealing temperature of 670 °C was found to be optimal for constructing a PCA possessing high amplitude of the THz radiation over the spectral range up to 1 THz at the resonance of 0.1 THz. The comparison of this PCA with the reference ZnTe crystal reveals a 2-fold increase in THz power. Furthermore, this antenna attains a 1.5-, 3-, and 2-fold increase in THz power, photocurrent efficiency, and actuating dc BV, as compared with the commercial ZOMEGA antenna. These results pave the way towards the creation of highly efficient LT-GaAs-based PCAs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []