miR-124 ameliorates dopaminergic neurons loss, reduces oxidative stress via targeting Axin1 and activating Wnt/β-catenin signaling in Parkinson's disease mice

2021 
ABSTRACT Background: Recent studies have revealed the close correlation between microRNAs (miRs) and Parkinson's disease (PD). Here, we aimed to investigate the neuroprotective effect of miR-124 in a PD mouse model. Methods: MiR-124 expression in human plasma was detected by qRT-PCR. PD mouse model was established by stereotactic injection of 6-hydroxydopmine. Lentivirus were used to deliver and overexpress miR-124 and Axin1 into the substantia nigra. Multiple behavioral tests and oxidative stress assays were carried out to access the protective effect of miR-124 against PD. Western blot and luciferase assay were conducted to dissect the underlying molecular mechanisms. Results: MiR-124 expression was decreased in PD patients. Overexpression of miR-124 in PD mice could improve motor defects, ameliorate dopaminergic neurons loss, and reduce oxidative stress. Mechanistically, miR-124 targeted Axin1 directly, and then attenuated PD progression via suppressing Axin1 and activating the Wnt/β-catenin pathways in PD mice. Conclusion: MiR-124 is an important neuroprotective factor, which suppresses Axin1 and activates Wnt/β-catenin signaling pathways in PD mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []