Analysis of the Influence of Geometric Parameters on the Stress Distributions in Adhesively Bonded Scarf Joints Using 2D Models Under Elastic Assumption

2014 
The scarf joint is a usual experimental assembly employed to analyze the mechanical behavior of an adhesive. In fact, using a unique type of bonded assembly with a classic tensile testing machine, various tensile-shear loadings of the adhesive can be applied by changing the value of the scarf angle. In this paper, accurate numerical analyses of the stress distributions within the adhesive in scarf joints under elastic assumption using 2D models are developed. Numerical results underline the influence of the adhesive thickness and mainly the influence of the scarf angle on the edge effects, and confirm the presence of an optimal scarf angle associated with very low stress concentrations. Moreover, the use of a suited elastic limit for the adhesive, defined from the two stress invariants, hydrostatic stress and von Mises equivalent stress, allows the more stressed parts of the adhesive with respect to the scarf angle to be defined. These results also underline the possible influences of the edge effects on ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []