Photoprotective Mechanisms in Photosystem II of Ephedra monosperma during Development of Frost Tolerance

2014 
Dissipation of light energy absorbed by photosystem II (PSII) in assimilating shoots of an evergreen shrub Ephedra monosperma was investigated during its transition from the vegetative to frost-tolerant state under natural conditions of Central Yakutia. The dynamics of modulated chlorophyll fluorescence and carotenoid content was analyzed during seasonal decrease in ambient temperature. The seasonal cooling was accompanied by a stepwise decrease in photochemical activity of PSII (F v/F m = (F m − F 0)/F m). The decrease in F v/F m occurred from the beginning of September to the end of October, when the temperature was lowered from 10 to −8°C. During winter period the residual activity of PSII was retained at about 30% of the summer values. The seasonal decrease in temperature was accompanied by a significant stimulation of pH-independent dissipative processes in reaction centers and antenna of PSII. The increase in energy losses was paralleled by a proportional increase in zeaxanthin content on the background of decreasing content of violaxanthin and β-carotene as possible zeaxanthin precursors. At the same time, inhibition of light-induced non-photochemical quenching in the PSII antenna was observed. The results suggest that principal photoprotective mechanisms during seasonal lowering of temperature are: (1) inactivation of PSII and dissipation of excitation energy in PSII reaction centers and (2) zeaxanthin-mediated energy dissipation in the antenna complexes. The first mechanism seems to prevail at early stages of seasonal cooling, whereas both mechanisms are recruited from the onset of sustained freezing temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []