Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome.

2021 
Hutchinson–Gilford progeria syndrome (HGPS) is a rare, invariably fatal childhood premature aging disorder caused by a pre-messenger RNA (mRNA) splicing defect in the LMNA gene. We used combined in vitro screening and in vivo validation to systematically explore the effects of target sequence, backbone chemistry and mechanism of action to identify optimized antisense oligonucleotides (ASOs) for therapeutic use in HGPS. In a library of 198 ASOs, the most potent ASOs targeted the LMNA exon 12 junction and acted via non-RNase H-mediated mechanisms. Treatment with an optimized lead candidate resulted in extension of lifespan in a mouse model of HGPS. Progerin mRNA levels were robustly reduced in vivo, but the extent of progerin protein reduction differed between tissues, suggesting a long half-life and tissue-specific turnover of progerin in vivo. These results identify a novel therapeutic agent for HGPS and provide insight into the HGPS disease mechanism. Optimized antisense oligonucleotides that can reduce progerin tissue expression in vivo pave the way for development of a novel therapeutic approach for Hutchinson–Gilford progeria syndrome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    7
    Citations
    NaN
    KQI
    []