Subretinal Delivery of Ultrathin Rigid-Elastic Cell Carriers Using a Metallic Shooter Instrument and Biodegradable Hydrogel Encapsulation

2021 
Purpose To develop a surgical technique for the subretinal implantation of cell carriers suitable for the transplantation of cultured retinal pigment epithelium (RPE) in a preclinical animal model. Methods Cell carriers were porous 10-μm-thick polyester membranes. A custom-made shooter instrument consisted of a 20-gauge metallic nozzle with a nonstick plunger. Fetal human RPE cultures were used for vitality assessment during instrument handling. Transvitreal subretinal implantation of carriers without RPE was performed in 31 rabbits after vitrectomy. Fourteen of 31 implants were encapsulated in gelatin. Fluid turbulence over the implantation site was minimized using a novel infusion cannula. Six rabbits had intravitreal plasmin injections before surgery. SD-OCT in vivo images were obtained after 3, 7, and 14 days, followed by perfusion-fixed histology. Results Gelatin encapsulation of RPE/polyester implants made cell loss during handling reproducible, compared with 40% of controls showing random, large damage zones. Gelatin implants were ejected smoothly in 12 of 14 surgeries (86%), whereas "naked" implants frequently became trapped with the instrument, which reduced success to 9 of 17 cases (53%). Vitreous remnants after vitrectomy alone complicated subretinal placement of encapsulated and naked implants in 7 of 25 cases (28%). Plasmin-assisted vitrectomy resulted in implant ejection unperturbed by vitreous adhesions in six experiments. SD-OCT and histology demonstrated atraumatic subretinal implant delivery after uncomplicated surgery. Conclusions A novel shooter instrument design allows for safe and atraumatic transvitreal delivery of hydrogel-encapsulated, ultrathin, rigid-elastic carriers into the subretinal space. The procedure may be used in the future to deliver cultured RPE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []