Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer

2019 
AIM To assess the prognostic value of 2-[ 18 F]-fluoro-2-deoxy- d- glucose (FDG) positron-emission tomography (PET)-based radiomics using a machine learning approach in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Ninety-three patients with stage I–III NSCLC who underwent combined PET/computed tomography (CT) followed by curative resection. A total of 35 unique quantitative radiomic features was extracted from the PET images, which included imaging phenotypes such as pixel intensity, shape, and texture. Radiomic features were ranked based on score according to their correlation with disease recurrence status within a 3-year follow-up. The recurrence risk classification performances of machine learning algorithms (random forest, neural network, naive Bayes, logistic regression, and support vector machine) using the 20 best-ranked features were compared using the areas under the receiver operating characteristic curve (AUC) and validated by the random sampling method. RESULTS Contrast and busyness texture features from neighbourhood grey-level difference matrix were found to be the two best predictors of disease recurrence. The random forest model obtained the best performance (AUC: 0.956, accuracy: 0.901, F1 score: 0.872, precision: 0.905, recall: 0.842), followed by the neural network model (AUC: 0.871, accuracy: 0.780, F1 score: 0.708, precision: 0.755, recall: 0.666). CONCLUSION A PET-based radiomic model was developed and validated for risk classification in NSCLC. The machine learning approach with random forest classifier exhibited good performance in predicting the recurrence risk. Radiomic features may help clinicians to improve the risk stratification for clinical practice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    28
    Citations
    NaN
    KQI
    []