Loss of tumor suppressive properties of lipid metabolism enzyme CPT2 in ovarian carcinoma: Comment on “CPT2 down-regulation promotes tumor growth and metastasis through inducing ROS/NFκB pathway in ovarian cancer” by Zhang et al.

2021 
Abstract Lipid metabolism is an essential process in cancer growth and progression. It is highly relevant in tumors with an adipocyte-rich microenvironment, such as ovarian carcinoma (OC). Carnitine palmitoyltransferase 2 (CPT2) is a key enzyme in fatty acid oxidation (FAO) that functions as a tumor suppressor in OC. Downregulation of CPT2 is reportedly associated with poor prognosis of OC patients. At the cellular level, low CPT2 translates into reduced NADPH level and unopposed reactive-oxygen species (ROS)/nuclear factor kappa B (NFκB) signaling which are paralleled by induction of mesenchymal mediators, invasion and metastasis. While strategies to propagate the tumor suppressive properties of CPT2 have yet to be developed, a comprehensive approach of co-assessment and co-targeting of CPT2 and its family member CPT1, or/and other key FAO players with FAO-specific inhibitors or/and less specific inhibitors (e.g. targeting NFκB, STAT3) is worth pursuing to improve understanding of the metabolic aspects of OC and develop a lipid metabolism-centered therapeutic strategy that can benefit OC patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []