High-resolution vacuum ultraviolet laser spectroscopy of the C 0+u ← X 0+g transition of Xe2

2004 
Rotationally resolved (1 + 1′), resonance-enhanced, two-photon ionization spectra of the C 0+u ← X 0+g transition of several isotopomers of Xe2 have been recorded. Rotational constants have been determined for the v′ = 14–26 levels of the C 0+u Rydberg state and the v′′ = 0 and 1 levels of the X 0+g ground state, and band origins have been determined with an absolute accuracy of 0.015 cm–1 for the transitions to the v′ = 14–26 levels of the C 0+u state of the 129Xe2, 129Xe–132Xe, and 131Xe–136Xe isotopomers. The equilibrium internuclear separation of the X 0+g ground state (Re = 4.3773(49) A) was determined from the rotational constants of the v′′ = 0 and 1 levels. The analysis of the isotopic shifts of the band origins enabled the confirmation of the absolute numbering of the vibrational levels of the C 0+u state determined by Lipson et al. (R.H. Lipson, P.E. Larocque, and B.P. Stoicheff. J. Chem. Phys. 82, 4470 (1985)). A semiempirical interaction potential for the X 0+g ground state was derived in a no...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    16
    Citations
    NaN
    KQI
    []