An effective chromatographic fingerprinting workflow based on comprehensive two-dimensional gas chromatography - mass spectrometry to establish volatiles patterns discriminative of spoiled hazelnuts (Corylus avellana L.)

2020 
Abstract The volatile fraction of hazelnuts encrypts information about: cultivar/geographical origin, post-harvest treatments, oxidative stability and sensory quality. However, sensory features could be buried under other dominant chemical signatures posing challenges to an effective classification based on pleasant/unpleasant notes. Here a novel workflow that combines Untargeted and Targeted (UT) fingerprinting on comprehensive two-dimensional gas-chromatographic patterns is developed to discriminate spoiled hazelnuts from those of acceptable quality. By flash-profiling, six hazelnut classes are defined: Mould, Mould-rancid-solvent, Rancid, Rancid-stale, Rancid-solvent, and Uncoded KO. Chromatographic fingerprinting on composite 2D chromatograms from samples belonging to the same class (i.e., composite class-images) enabled effective selection of chemical markers: (a) octanoic acid that guides the sensory classification being positively correlated to mould; (b) ƴ-nonalactone, ƴ-hexalactone, acetone, and 1-nonanol that are decisive to classify OK and rancid samples; (c) heptanoic and hexanoic acids and ƴ-octalactone present in high relative abundance in rancid-solvent and rancid-stale samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []