Long-term Adaptations of Sabella Giant Axons to Hyposmotic Stress

1978 
Reprint requests should be addressed to Dr Treherne. Sabella is a euryhaline osmoconformer which is killed by direct transfer to 50% sea water, but can adapt to this salinity with progressive dilution of the sea water. The giant axons were adapted to progressive dilution of the bathing medium (both in vivo and in vitro ) and were able to function at hyposmotic dilutions (down to 50%) sufficient to induce conduction block in unadapted axons. Hyposmotic adaptation of the giant axon involves a decrease in intracellular potassium concentration which tends to maintain a relatively constant resting potential during adaptation despite the reduction in external potassium concentration. There is no appreciable change in the intracellular sodium concentration, but the relative sodium permeability of the active membrane increases during hyposmotic adaptation. This increase partially compensates for the reduction in sodium gradient across the axon membrane, during dilution of the bathing media, by increasing the overshoot of the action potentials recorded in hyposmotically adapted axons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []