Quantum critical properties of Bose─Hubbard models

2019 
The Mott insulator-to-superfluid transition exhibited by the Bose-Hubbard model on a two-dimensional square lattice occurs for any value of the chemical potential, but becomes critical at the tips of the so-called Mott lobes only. Employing a numerical approach based on a combination of high-order perturbation theory and hypergeometric analytic continuation we investigate how quantum critical properties manifest themselves in computational practice. We consider two-dimensional triangular lattices and three-dimensional cubic lattices for comparison, providing accurate parametrizations of the phase boundaries at the tips of the respective first lobes. In particular, we lend strong support to a recently suggested inequality which bounds the divergence exponent of the one-particle correlation function in terms of that of the two-particle correlation function, and which sharpens to an equality if and only if a system becomes critical.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    6
    Citations
    NaN
    KQI
    []