Dextran-based scaffolds for in-situ hydrogelation: Use for next generation of bioartificial cardiac tissues

2021 
Abstract In pursuit of a chemically-defined matrix for in vitro cardiac tissue generation, we present dextran (Dex)-derived hydrogels as matrices suitable for bioartificial cardiac tissues (BCT). The dextran hydrogels were generated in situ by using hydrazone formation as the crosslinking reaction. Material properties were flexibly adjusted, by varying the degrees of derivatization and the molecular weight of dextran used. Furthermore, to modulate dextran’s bioactivity, cyclic pentapeptide RGD was coupled to its backbone. BCTs were generated by using a blend of modified dextran and human collagen (hColI) in combination with induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and fibroblasts. These hColI + Dex blends with or without RGD supported tissue formation and functional maturation of CMs. Contraction forces (hColI + Dex-RGD: 0.27 ± 0.02 mN; hColI + Dex: 0.26 ± 0.01 mN) and frequencies were comparable to published constructs. Thus, we could demonstrate that, independent of the presence of RGD, our covalently linked dextran hydrogels are a promising matrix for building cardiac grafts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []