Weakly nonlinear multi-mode Bell-Plesset growth in cylindrical geometry

2020 
Bell–Plesset (BP) effect caused perturbation growth plays an important role in better understanding of characteristics of the convergence effect. Governing equations for multi-mode perturbation growth on a cylindrically convergent interface are derived. The second-order weakly nonlinear (WN) solutions for two-mode perturbations at the interface which is subject to uniformly radical motion are obtained. Our WN theory is consistent with the numerical result in terms of mode-coupling effect in converging Richtmyer–Meshkov instability. Nonlinear mode-coupling effects will cause irregular deformation of the convergent interface. The mode-coupling behavior in convergent geometry depends on the mode number, Atwood number A and convergence ratio Cr. The A = –1.0 at the interface results in larger perturbation growth than A = 1.0. The growth of generated perturbation modes from two similar modes at the initial stage are smaller than that from two dissimilar modes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []