Adsorption and Magnetic Separation of Lead from Synthetic Wastewater Using Carbon/Iron Oxide Nanoparticles Composite

2014 
Background and purpose: Removal of lead as a toxic metal from contaminated water resources is necessary due to the dangerous effect of lead. One of the most effective methods of removal is the adsorption process. The aim of this study was adsorption and magnetic separation of lead from synthetic wastewater using iron oxide nanoparticles and carbon (ION/C) composite Material and Methods: In this study nanoparticles of iron oxide (ION) were used as a source of iron for magnetic separation of powder activated carbon from solution samples. The physical and surface properties of the adsorbent were studied along with influencing factors (pH, contact time, adsorbent dosage, initial lead concentration, and temperature) on the adsorption process. Kinetic equations and equilibrium isotherms studies were also conducted. Results: The size of ION and specific surface area of ION/C were found to be 30-80 nm and 671.2 m 2 /g, respectively. We observed that the adsorption process reached equilibrium at 60 min and pH=6and adsorption efficiency increased by increasing the amount of adsorbent and temperature. Maximum adsorption capacity based on Langmuir isotherms was obtained 67.1mg/g at 50 °C. Conclusion: According to this study it is believed that magnetized active carbon by keeping its physical and surface properties could be a suitable method to solve some related problems including separation and filtration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    11
    Citations
    NaN
    KQI
    []