Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction

2018 
Although chemotherapeutic regimen containing gemcitabine is the first-line therapy for advanced lung squamous cell carcinoma (LSCC), gemcitabine resistance remains an important clinical problem. Some studies suggest that overexpressions of ribonucleotide reductase subunit M2 (RRM2) may be involved in gemcitabine resistance. We used a novel RRM2 inhibitor, GW8510, as a gemcitabine sensitization agent to investigate the therapeutic utility in reversing gemcitabine resistance in LSCC. Results showed that the expressions of RRM2 were increased in gemcitabine intrinsic resistant LSCC cells upon gemcitabine treatment. GW8510 not only suppressed LSCC cell survival, but also sensitized gemcitabine-resistant cells to gemcitabine through autophagy induction mediated by RRM2 downregulation along with decreases of deoxyribonucleotide triphosphate (dNTP) levels. The combination of GW8510 and gemcitabine produced a synergistic effect on killing LSCC cells. The synergism of the two agents was impeded by addition of autophagy inhibitors chloroquine or bafilomycin A1, or knockdown of the autophagy gene BECN1. Moreover, GW8510-caused LSCC cell sensitization to gemcitabine through autophagy induction was parallel with impairment of DNA double strand break repair and marked increase of cell apoptosis, revealing a crosstalk between autophagy and DNA damage repair, and an interplay between autophagy and apoptosis. Finally, gemcitabine sensitization mediated by autophagy induction through GW8510-caused RRM2 downregulation was demonstrated in vivo gemcitabine-resistant LSCC tumor xenograft, further indicating that the sensitization is dependent on autophagy activation. In conclusions, GW8510 can reverses gemcitabine resistance in LSCC cells through RRM2 downregulation-mediated autophagy induction, and GW850 may be a promising therapeutic agent against LSCC as it combined with gemcitabine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    10
    Citations
    NaN
    KQI
    []