Metal Ions-Stimulated Iron Oxidation in Hydroxylases Facilitates Stabilization of HIF-1α Protein

2009 
The exposure of cells to several metal ions stabilizes HIF-1α protein. However, the molecular mechanisms are not completely understood. They may involve inhibition of hydroxylation by either substitution of iron by metal ions or by iron oxidation in the hydroxylases. Here we provide evidence supporting the latter mechanism. We show that HIF-1α stabilization in human lung epithelial cells occurred following exposure to various metal and metalloid ions, including those that cannot substitute for iron in the hydroxylases. In each case addition of the reducing agent ascorbic acid (AA)* abolished HIF-1α protein stabilization. To better understand the role of iron oxidation in hydroxylase inhibition and to define the role of AA in the enzyme recovery we applied molecular modeling techniques. Our results indicate that the energy required for iron substitution by Ni(II) in the enzyme is high and unlikely to be achieved in a biological system. Additionally, computer modeling allowed us to identify a tridentate coordination of AA with the enzyme-bound iron, which explains the specific demand for AA as the iron reductant. Thus, the stabilization of HIF-1α by numerous metal ions that cannot substitute for iron in the enzyme, the alleviation of this effect by AA, and our computer modeling data support the hypothesis of iron oxidation in the hydroxylases following exposure to metal ions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    30
    Citations
    NaN
    KQI
    []