Show me your secret(ed) weapons: a multifaceted approach reveals novel type III-secreted effectors of a plant pathogenic bacterium
2019
Many Gram-negative plant and animal pathogenic bacteria employ a type III secretion system (T3SS) to secrete protein effectors into the cells of their hosts and promote disease. The plant pathogen Acidovorax citrulli requires a functional T3SS for pathogenicity. As with Xanthomonas and Ralstonia spp., an AraC-type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III-secreted effectors (T3Es) in A. citrulli. A previous study reported eleven T3E genes in this pathogen, based on the annotation of a sequenced strain. We hypothesized that this was an underestimation. Guided by this hypothesis, we aimed at uncovering the T3E arsenal of the A. citrulli model strain, M6. We carried out a thorough sequence analysis searching for similarity to known T3Es from other bacteria. This analysis revealed 51 A. citrulli genes whose products are similar to known T3Es. Further, we combined machine learning and transcriptomics to identify novel T3Es. The machine learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA-Seq revealed differential gene expression between wild-type M6 and a mutant defective in HrpX. Data combined from these approaches led to the identification of seven novel T3E candidates, that were further validated using a T3SS-dependent translocation assay. These T3E genes encode hypothetical proteins, do not show any similarity to known effectors from other bacteria, and seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study not only uncovered the arsenal of T3Es of an important pathogen, but it also places A. citrulli among the "richest" bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
88
References
0
Citations
NaN
KQI