Turbulence Associated with Magnetopause Reconnection

2017 
We present detailed analysis of the turbulence observed in three-dimensional particle-in-cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter made by the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic x-line and separatrices, is electromagnetic in nature, is characterized by a wavevector $k$ given by $k\rho_e\sim(m_e/m_i)^{0.25}$ with $\rho_e$ the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around $\pm 10$ mV/m, which is much greater than the reconnection electric field of around $0.1$ mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to $\sqrt{\rho_e\rho_i}$ than the $\rho_e$ or $d_e$ scalings seen in 2D reconnection simulations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []