A Local Computing Cell and 6T SRAM-Based Computing-in-Memory Macro With 8-b MAC Operation for Edge AI Chips

2021 
This article presents a computing-in-memory (CIM) structure aimed at improving the energy efficiency of edge devices running multi-bit multiply-and-accumulate (MAC) operations. The proposed scheme includes a 6T SRAM-based CIM (SRAM-CIM) macro capable of: 1) weight-bitwise MAC (WbwMAC) operations to expand the sensing margin and improve the readout accuracy for high-precision MAC operations; 2) a compact 6T local computing cell to perform multiplication with suppressed sensitivity to process variation; 3) an algorithm-adaptive low MAC-aware readout scheme to improve energy efficiency; 4) a bitline header selection scheme to enlarge signal margin; and 5) a small-offset margin-enhanced sense amplifier for robust read operations against process variation. A fabricated 28-nm 64-kb SRAM-CIM macro achieved access times of 4.1-8.4 ns with energy efficiency of 11.5-68.4 TOPS/W, while performing MAC operations with 4- or 8-b input and weight precision.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []