Editorial: Renal Function in Acute and Chronic Kidney Diseases

2020 
Acute and chronic kidney diseases have devastating consequences on human health. Renal vascular function, glomerular filtration, and epithelial transport are required for water and electrolyte homeostasis. Nephrotoxicity and diseases such as hypertension, diabetes, and metabolic syndrome contribute significantly to acute and chronic kidney diseases (Barnett and Cummings, 2018). These pathological states impact on renal vascular and epithelial function and the ability for the kidney to maintain water and electrolyte homeostasis. Experimental and clinical studies over the past decade determined that there is a transition from acute to chronic kidney injury (Fiorentino et al., 2018). Acute kidney injury in the clinical setting can cause sustained alterations in epithelial transport and renal hemodynamics that increase the risk for developing chronic kidney disease (Sharfuddin and Molitoris, 2011). Currently, there are extremely limited options to treat acute and chronic kidney diseases. A Research Topic on acute and chronic kidney diseases is timely because this is a very fast-moving field that is focused on the tremendous need for kidney disease therapeutics. Articles in this Research Topic advance our understanding of organismal, cellular, and molecular mechanisms that contribute to acute and chronic kidney diseases. The Research Topic has broad interest since it covers acute kidney injury, chronic kidney disease, diabetic nephropathy, and hypertension mediated kidney disease. Research articles span cell signaling, animal studies, human and animal disease pathology studies, renal hemodynamics, glomerular filtration, and renal epithelial transport studies. Thirty contributions focus on novel developments defining renal vascular and epithelial mechanisms that contribute to acute and chronic kidney diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []