Study on Anti-Explosion Behavior of High-Strength Reinforced Concrete Beam Under Blast Loading

2020 
To investigate the anti-explosion behavior of high-strength reinforced concrete (RC) beam subjected to blast load, the ANSYS/LS-DYNA finite element analysis software was applied. Based on anti-explosion test results, the effects of reinforcement strength grade, reinforcement ratio and stirrup ratio on dynamic response, failure mode, resistance curve and ductility of RC beams under uniform blast load were studied. The anti-explosion performance of RC beam can be effectively improved by increasing the strength grade of the high-strength reinforcement. When the shear capacity is high enough, the ultimate capacity of high-strength RC beam can be significantly enhanced by increasing its reinforcement ratio. Anti-explosion performance may deteriorate due to the change of failure modes when the reinforcement ratio is increased to a certain extent. Increasing stirrup ratio can improve the shear capacity of high-strength RC beam to guarantee the full utilization of the advantage of high flexural capacity. For high-strength RC beam with sufficiently shear capacity, the further increase of stirrup ratio has a slight effect on the anti-explosion ability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []