Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3

2016 
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH3NH3PbI3. The calculated photocurrent density for a system with broken inversion symmetry is about 10−9 A/W, comparable to the previously studied quantum well and bulk Rashba systems. The circular photogalvanic effect relies on inversion symmetry breaking, so that by tuning the optical penetration depth, the degree of inversion symmetry breaking can be probed at different depths from the sample surface. We propose that measurements of this effect may clarify the presence or absence of inversion symmetry, which remains a controversial issue and has been argued to play an important role in the high conversion efficiency of this material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    27
    Citations
    NaN
    KQI
    []